Weighted max norms, splittings, and overlapping additive Schwarz iterations
نویسندگان
چکیده
Weighted max-norm bounds are obtained for Algebraic Additive Schwarz Iterations with overlapping blocks for the solution of Ax = b, when the coefficient matrix A is an M -matrix. The case of inexact local solvers is also covered. These bounds are analogous to those that exist using A-norms when the matrix A is symmetric positive definite. A new theorem concerningP -regular splittings is presented which provides a useful tool for the A-norm bounds. Furthermore, a theory of splittings is developed to represent Algebraic Additive Schwarz Iterations. This representation makes a connection with multisplitting methods. With this representation, and using a comparison theorem, it is shown that a coarse grid correction improves the convergence of Additive Schwarz Iterations when measured in weighted max norm.
منابع مشابه
An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms
Convergence results for the restrictive additive Schwarz (RAS) method of Cai and Sarkis [SIAM J. Sci. Comput., 21 (1999), pp. 792–797] for the solution of linear systems of the form Ax = b are provided using an algebraic view of additive Schwarz methods and the theory of multisplittings. The linear systems studied are usually discretizations of partial differential equations in two or three dim...
متن کاملOverlapping Additive and Multiplicative Schwarz Iterations for H-matrices
In recent years, an algebraic framework was introduced for the analysis of convergence of Schwarz methods for the solution of linear systems of the form Ax = b. Within this framework, additive and multiplicative Schwarz were shown to converge when the coefficient matrix A is a nonsingular M -matrix, or a symmetric positive definite matrix. In this paper, these results are extended to the case o...
متن کاملOn Non-overlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Methods in H-type Norms
Abstract. We analyse the spectral bounds of non-overlapping domain decomposition additive Schwarz preconditioners for hp-version discontinuous Galerkin finite element methods in H-type norms. Using original approximation results for discontinuous finite element spaces, it is found that these preconditioners yield a condition number bound of order 1 + Hp/hq, where H and h are respectively the co...
متن کاملRASHO: A Restricted Additive Schwarz Preconditioner with Harmonic Overlap
A restricted additive Schwarz (RAS) preconditioning technique was introduced recently for solving general nonsymmetric sparse linear systems [1, 3, 4, 7, 8, 9, 11]. The RAS preconditioner improves the classical additive Schwarz preconditioner (AS), [10], in the sense that it reduces the number of iterations of the iterative method, such as GMRES, and also reduces the communication cost per iter...
متن کاملWeighted Max-Norm Estimate of Additive Schwarz Iteration Scheme for Solving Linear Complementarity Problems
In this paper, we consider an algebraic additive Schwarz iteration scheme for solving the nite-dimensional linear complementarity problem that involves an M-matrix. The scheme contains some existing algorithms as special cases. We establish monotone convergence of the iteration scheme under appropriate conditions. Moreover, using the concept of weak regular splitting, we estimate weighted max-n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 83 شماره
صفحات -
تاریخ انتشار 1999